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We use a kinetic treatment to study the linear transverse dispersion relation for a magnetized

isotropic relativistic electron-positron plasma with finite relativistic temperature. The explicit linear

dispersion relation for electromagnetic waves propagating along a constant background magnetic

field is presented, including an analytical continuation to the whole complex frequency plane for

the case of Maxwell-J€uttner velocity distribution functions. This dispersion relation is studied

numerically for various temperatures. For left-handed solutions, the system presents two branches,

the electromagnetic ordinary mode and the Alfv�en mode. In the low frequency regime, the Alfv�en

branch has two dispersive zones, the normal zone (where @x/@k> 0) and an anomalous zone (where

@x/@k< 0). We find that in the anomalous zone of the Alfv�en branch, the electromagnetic waves

are damped, and there is a maximum wave number for which the Alfv�en branch is suppressed. We

also study the dependence of the Alfv�en velocity and effective plasma frequency with the tempera-

ture. We complemented the analytical and numerical approaches with relativistic full particle simu-

lations, which consistently agree with the analytical results. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4894679]

I. INTRODUCTION

Relativistic electron-positron plasmas have received

much attention during the last decades. They are relevant in

several environments of astrophysical and laboratory nature,

such as accretion disks,1–3 models of early universe,4,5 pulsar

magnetospheres,6,7 hypothetical quark stars,8 ultraintense

lasers,9 and laboratory and tokamak plasmas.10,11 In several

of the physical systems mentioned above, relativistic effects

and temperature play an important role, thus, it is fundamen-

tal to understand wave propagation modes in relativistic

plasmas with temperature, in particular, kinetic effects. Even

though relativistic fluid models have successfully taken into

account thermal12 and non-linear13,14 effects in the propaga-

tion of electromagnetic waves in relativistic plasmas, a

kinetic model is needed to have a better understanding of the

wave propagation, as effects such as wave-particle interac-

tions are expected to modify it.

Within this context, Dom�ınguez et al.15 studied the

propagation of waves in relativistically magnetized electron-

positron plasmas based on the one dimensional relativistic

Vlasov equation along the direction of the background mag-

netic field, and considering the plasma as a fluid in the per-

pendicular plane.16,17 In their study, comparing with the

fluid model of Asenjo et al.,12 Dom�ınguez et al.15 found that

both models agree in the dependence of the plasma fre-

quency and Alfv�en speed on temperature, but kinetic effects

increase the plasma frequency and decrease the Alfv�en speed

for a given temperature. However, in Dom�ınguez et al.15 ki-

netic effects are considered only in the direction of propaga-

tion of the waves and damping effects are not taken into

account.

On the other hand, Schlickeiser18 and Lazar and

Schlickeiser19,20 have developed a model to express the fully

kinetic dispersion relation for waves propagating parallel to

the mean magnetic field, as a one dimensional integral

depending only on the Lorentz factor and the temperature. In

the case of isotropic velocity distribution functions, Lazar

and Schlickeiser20 describe both growing and the damped

waves, by analytical continuation in the whole complex fre-

quency plane. They found important relativistic corrections,

in particular, for pair plasmas (e.g., electron-positron plas-

mas) and nonisothermal plasmas, in which relativistic effects

play an important role at low frequencies even for nonrela-

tivistic temperatures. This particular theoretical technique

has been recently used in the study of spontaneous electro-

magnetic fluctuations in unmagnetized21–24 and magne-

tized25 plasmas.

In the present manuscript, we have applied the model by

Lazar and Schilckeiser20 to obtain the complex dispersion

relation in the case of circularly polarized waves propagating

in the direction of the mean field, in a relativistic electron-

positron plasma modeled with a Maxwell-J€uttner velocity

distribution function. We thus generalize the work of
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Dom�ınguez et al., by considering kinetic effects on all spatial

directions, not only along the background magnetic field. We

calculate the explicit analytic continuation in the complex

plane and compute the complex frequencies as a function of

the wave number for various values of the temperature and

plasma beta parameter. In addition, we compare our theoreti-

cal calculations with full particle relativistic Particle in Cell
(PIC) simulations to test our results.

This paper is organized as follows. In Sec. II, the linear

dispersion relation is derived, including the proper analytical

continuation from positive to negative imaginary parts of the

frequencies. In Sec. III, the dispersion relation is solved

numerically and its main features are discussed, whereas in

Sec. IV, we complement the analytical and numerical

approaches with the performance of relativistic PIC simula-

tions in the stable regime of the plasma under various ther-

mal conditions. Finally, in Sec. V, our results are

summarized and conclusions are outlined.

II. LINEAR DISPERSION RELATION

Let us start from the relativistic Vlasov equation

@fj

@t
þ~v � @fj

@~x
þ qj

~E þ~v
c
� ~B

� �
� @fj
@~p
¼ 0 ; (1)

where qj is the charge, mj is the mass of each particle species,

j is the species index, c is the light speed, and~p is the relativ-

istic momentum.

The linear dispersion relation is derived from Eq. (1).

For waves propagating parallel to the background magnetic

field ~B0 ¼ B0ẑ, the transverse dispersion relation is given

by19,20

KþR;L ¼ 1� c2k2

x2
þp

X
j

x2
p;j

ð1
�1

dpz

ð1
0

dp?
p2
?

cx� kpz=m6Xj

� x� kpz

mc

� �
@f 0ð Þ

j

@p?
þ kp?

mc

@f 0ð Þ
j

@pz

" #
¼ 0 ; (2)

where xp;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pq2

j nj=m
q

is the plasma frequency,

Xj¼ qjB0/(mc) is the cyclotron frequency for the species j,

and f
ð0Þ
j ðpz; p?Þ is the one-particle distribution function of

the species j that depends on the relativistic momentum pz

and p? parallel and perpendicular to the background field,

respectively. Subscripts R and L in K, are the labels for the

right and left-handed polarized waves, respectively. Notice

that right-handed (left-handed) polarized waves correspond

to the plus (minus) sign in the resonant denominator

cx� kpz/m 6 Xj in Eq. (2). The wave frequency is a com-

plex number, which we write as x¼xrþ iC, where xr is its

real part and C is its imaginary part. The superindex þ in K
indicates that the dispersion relation Eq. (2) is only valid for

C> 0. Finally, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp?=mcÞ2 þ ðpz=mcÞ2

q
is the rela-

tivistic Lorentz factor.

We can rewrite Eq. (2) using the transformation

s ¼ pz=ðmcÞ ; (3)

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

?=ðmcÞ2 þ p2
z=ðmcÞ2

q
; (4)

where the determinant of the Jacobian matrix is

det Jc ¼ c mcð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1� s2

p : (5)

Then, Eq. (2) becomes

KþR;L ¼ 1� c2k2

x2
� p

X
j

mjcð Þ3
x2

pj

x2

�
ð1

1

dc
ð ffiffiffiffiffiffiffiffi

c2�1
p

�
ffiffiffiffiffiffiffiffi
c2�1
p ds

@f 0ð Þ
j

@s
þ x

ck

@f 0ð Þ
j

@c

 !

� c2 � 1� s2

s� cx= ckð Þ7Xj= ckð Þ
¼ 0 : (6)

We are interested in studying a relativistic Maxwell-

J€uttner distribution function26 given by

f 0ð Þ
j cð Þ ¼

lj

4p mjcð Þ3K2 ljð Þ
e�ljc ; (7)

which is an isotropic distribution function f
ð0Þ
j ¼ f

ð0Þ
j ðcÞ. In

Eq. (7), lj¼mc2/(kBTj) is a dimensionless parameter related

to the plasma temperature and K2 is the modified Bessel

function of order 2. Then, Eq. (6) reduces to

KþR;L ¼ 1� 1

z2
� p

X
j

mjcð Þ3
x2

pj

c2k2z

ð1
1

dc
df 0ð Þ

j

dc

�
ð ffiffiffiffiffiffiffiffi

c2�1
p

�
ffiffiffiffiffiffiffiffi
c2�1
p ds

c2 � 1� s2

s� cz7tj
¼ 0 ; (8)

where we have defined z¼x/(ck) and tj¼Xj/(ck).

Following Ref. 20, we define

LþR;L;j c; z; tð Þ ¼
ð ffiffiffiffiffiffiffiffi

c2�1
p

�
ffiffiffiffiffiffiffiffi
c2�1
p ds

c2 � 1� s2

s� cz7tj
; (9)

and using the substitution (s 7 tj)/c¼ n, the integral becomes

LþR;L;j c; z; tð Þ ¼
ð ffiffiffiffiffiffiffiffiffiffi

1�c�2
p

7tj=c

�
ffiffiffiffiffiffiffiffiffiffi
1�c�2
p

7tj=c
dn

c2 � 1� t2
j � c2n272tjcn

n� z
:

(10)

Furthermore, we can reduce this integral, Eq. (10), in the

form

LþR;L;jðc; z; tÞ ¼ ½ð1� z2Þc272ztjc�ð1þ t2
j Þ�JþR;L;jðc;z; tÞ

� 2ðzc6tjÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
c2� 1

p
; (11)

where we have defined

JþR;L;j c; z; tð Þ ¼
ð ffiffiffiffiffiffiffiffiffiffi

1�c�2
p

7tj=c

�
ffiffiffiffiffiffiffiffiffiffi
1�c�2
p

7tj=c
dn

1

n� z
: (12)
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Finally, using these definitions, the dispersion relation, Eq. (8), can be rewritten as

KþR;L ¼ 1� 1

z2
þ 2p

X
j

mjcð Þ3
x2

pj

c2k2z

ð1
1

dc
df 0ð Þ

j

dc
cz6tjð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p

�p
X

j

mjcð Þ3
x2

pj

c2k2z

ð1
1

dc
df 0ð Þ

j

dc
JþR;L;j c; z; tð Þ 1� z2ð Þc272ztjc� 1þ t2

j

� �h i
¼ 0 ; (13)

i.e., we have reduced the dispersion relation into a one-dimensional complex integral.

In the case of an electron-positron plasma, we have me¼mp¼m, and considering that both species have equal tempera-

ture, so le¼lp¼ l, the dispersion relation becomes

KþR;L ¼ 1� 1

z2
�

x2
pel

c2k2
þ

x2
pel

2

4K2 lð Þ
1

c2k2z

�ð1
1

dc e�lcJþR;L;e c; z; tð Þ 1� z2ð Þc262ztc� 1þ t2ð Þ
� 	

þ
ð1

1

dc e�lcJþR;L;p c; z; tð Þ 1� z2ð Þc272ztc� 1þ t2ð Þ
� 	


¼ 0 : (14)

Here, we have used the identities ð1
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
e�lcdc ¼

K1 lð Þ
l

; (15)

ð1
1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
e�lcdc ¼

K2 lð Þ
l

; (16)

where K1 is the modified Bessel function of order 1.

Due to the mass symmetry between electrons and positrons, Eq. (14) is symmetric with respect to the reflections k! �k,

and the change between left- and right-handed polarized waves is equivalent to the reflection x!�x. From now on, we will

study the dispersion relation of left-handed circularly polarized electromagnetic waves, in which case the dispersion relation,

Eq. (14), yields

KþL ¼ 1� 1

z2
�

x2
pel

c2k2
þ

x2
pel

2

4K2 lð Þ
1

c2k2z

�ð1
1

dc e�lcJþL;e c; z; tð Þ 1� z2ð Þc2 � 2ztc� 1þ t2ð Þ
� 	

þ
ð1

1

dc e�lcJþL;p c; z; tð Þ 1� z2ð Þc2 þ 2ztc� 1þ t2ð Þ
� 	


¼ 0 ; (17)

and the proper definition of JþL;j is given by

JþL;j c; z; tð Þ ¼
ð ffiffiffiffiffiffiffiffiffiffi

1�c�2
p

þtj=c

�
ffiffiffiffiffiffiffiffiffiffi
1�c�2
p

þtj=c
dn

1

n� z
: (18)

Equation (17) is expected to yield the electromagnetic ordi-

nary and Alfv�en modes (this can be seen, for instance, by

considering the cold limit). In the case of right-handed

waves, KþR ¼ 0, they are expected to correspond to electro-

magnetic extraordinary and whistler wave modes.

A. Analytical Continuation

The dispersion relation for a relativistic electron-positron

plasma [Eq. (17)] is only valid for the upper complex fre-

quency plane Im(x) ¼ C > 0. To find the dispersion relation

in the whole complex frequency plane, we have to do the

proper analytical continuation to K�L for C � 0, such that

lim
C!0þ

KþL ¼ lim
C!0�

K�L ; (19)

which is equivalent to finding the analytical continuation of

the integral J�L;j:

lim
C!0þ

JþL;j ¼ lim
C!0�

J�L;j : (20)

We define

S1j cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�2

p
� tj

c
; (21)

S2j cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�2

p
þ tj

c
; (22)

which are the limits in the integral of Eq. (18) for each spe-

cies. In the Appendix A, we show the complete derivation

of the analytical continuation for the integral of Eq. (18),

which fulfills the condition in Eq. (20). Then, for electrons,

we have
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JL;e c; z; tð Þ ¼
1

2
ln

Re zð Þ � S2e cð Þ
� 	2 þ Im zð Þ2

Re zð Þ þ S1e cð Þ
� 	2 þ Im zð Þ2

8<
:

9=
;

þ i

(
arctan

S2e cð Þ � Re zð Þ
Im zð Þ

" #

þ arctan
S1e cð Þ þ Re zð Þ

Im zð Þ

" #
þ he cð Þ

)
; (23)

with

heðcÞ ¼

0; ReðzÞ ��
ffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p

;

prHðc� c1eÞHðc2e� cÞ; �
ffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p

<ReðzÞ<�1 ;

prHðc� c1eÞ; �1<ReðzÞ< 1 ;

0; ReðzÞ � 1 ;

8>>>><
>>>>:

where H is the Heaviside function,

c1e ¼
Re zð Þtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1� Re zð Þ2

q
1� Re zð Þ2

;

c2e ¼
Re zð Þt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1� Re zð Þ2

q
1� Re zð Þ2

;

and

r ¼
2; ImðzÞ < 0;

1; ImðzÞ ¼ 0;

0; ImðzÞ > 0:

8><
>:

For positrons, we have

JL;p c; z; tð Þ ¼
1

2
ln

Re zð Þ � S2p cð Þ
� 	2 þ Im zð Þ2

Re zð Þ þ S1p cð Þ
� 	2 þ Im zð Þ2

8<
:

9=
;

þ i

(
arctan

S2p cð Þ � Re zð Þ
Im zð Þ

" #

þ arctan
S1p cð Þ þ Re zð Þ

Im zð Þ

" #
þ hp cð Þ

)
; (24)

where

hpðcÞ ¼

0; ReðzÞ � �1 ;

prHðc� c1pÞ; �1< ReðzÞ � 1 ;

prHðc� c1pÞHðc2p� cÞ; �1< ReðzÞ<
ffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p

;

0; ReðzÞ �
ffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p

;

8>>>><
>>>>:

and

c1p ¼
�Re zð Þtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1� Re zð Þ2

q
1� Re zð Þ2

;

c2p ¼
�Re zð Þt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1� Re zð Þ2

q
1� Re zð Þ2

:

Finally, using these expressions for the analytical con-

tinuation of JL;j, we obtain a dispersion relation valid for the

whole complex plane, namely,

KL¼1� 1

z2
�

x2
pel

c2k2
þ

x2
pel

2

4K2 lð Þ
1

c2k2z

�
�ð1

1

dce�lcJL;e c;z;tð Þ 1�z2ð Þc2�2ztc� 1þ t2ð Þ
� 	

þ
ð1

1

dce�lcJL;p c;z;tð Þ 1�z2ð Þc2þ2ztc� 1þ t2ð Þ
� 	


¼0:

(25)

From the previous definitions, it is straightforward that both

functions, JL;e and JL;p, are continuous and analytical in the

whole complex plane (the calculation of the integrals is

detailed in Appendix A). Comparing with the unmagnetized

case, in the limit tj ! 0, we recover the solutions of Felten

et al. in Ref. 22.

III. NUMERICAL ANALYSIS

Using the solutions (23) and (24), we can solve the dis-

persion relation (25). Normalizing the frequency and wave

number as x¼x/Xc and y¼ ck/Xc, the dispersion relation

(25) becomes

KL¼1�y2

x2
�

x2
pe

X2
c

l
y2
þ

x2
pe

X2
c

l2

4K2 lð Þ
1

xy3

�
�ð1

1

dce�lcJL;e c;z;tð Þ y2�x2
� �

c2�2xc� 1þy2
� �� 	

þ
ð1

1

dce�lcJL;p c;z;tð Þ y2�x2
� �

c2þ2xc� 1þy2
� �� 	


¼0;

(26)

expression that is simple to solve numerically using standard

computational integration methods.

In Fig. 1, we have plotted the solutions of the dispersion

relation (26) for the case xpe/Xc¼ 1 and various plasma tem-

peratures: Solid (black) lines: l¼ 100; dashed (blue) lines:

l¼ 10; dotted dashed (red) lines l¼ 5; dotted (green) lines.

l¼ 2. Fig. 1(a) shows the real part of the normalized fre-

quency x¼x/Xc vs. the normalized wave number y¼ ck/Xc.

We can observe two branches that correspond to the electro-

magnetic ordinary and Alfv�en modes. From Fig. 1(a), we

can see that the electromagnetic branch has a lower fre-

quency cutoff for the real part of the frequency, which we

call the effective plasma frequency xeff
pe . The Alfv�en one has

an upper cutoff for the real part of the frequency, and for

high temperatures, an upper cutoff for the wave number. All

of these features are monotonic functions of the temperature

(l parameter). In contrast, previous models, fluid12 and

hybrid kinetic,15 have shown that the upper cutoff for the fre-

quency is independent of the temperature.

As seen in Fig. 1(a), the Alfv�en branch presents a very

interesting behavior, namely, for larger values of the wave

number y the sign of @Re(x)/@k¼ @Re(x)/@y changes. We

call the region where @Re(x)/@y< 0 as anomalous zone;

meanwhile, the one where @Re(x)/@y> 0 is the normal zone.
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This anomalous zone appears for smaller values of y as the

temperature increases (smaller l), and as noticed above, is

also characterized by the fact that there is a maximum wave

number kmax above which the real part of the Alfv�en branch

vanishes. Thus, for small wavelengths, the plasma does not

allow the propagation of Alfv�en waves. This cutoff for the

wave number decreases with the temperature, as it can be

seen in Fig. 1(a). The anomalous zone in the dispersion rela-

tion of relativistic electron positron plasma has been reported

earlier by Asenjo et al.,12 using a relativistic fluid model, and

by Dom�ınguez et al.,15 using a hybrid model in which the ki-

netic effects have been taken into account only along the

direction of propagation of the wave. Also, the nonlinear

behavior of waves belonging to this anomalous zone has

been studied in recent papers, Refs. 13 and 14. However,

these works have not considered kinetic damping effects on

waves, which are included in this manuscript.

Fig. 1(b) shows the imaginary part of the normalized

frequency vs. the normalized wave number for several tem-

peratures. Lying on the axis Im(x)¼ 0, we find four curves

superimposing each other, corresponding to solutions of the

electromagnetic branch for each temperature; thus, waves

in this branch are stable for all wavelengths and tempera-

tures. On the other hand, we can see that for all the tempera-

tures considered there are solutions with Im(x) 6¼ 0

corresponding to the Alfv�en branch. These waves are

damped due to resonant wave-particle interactions, which

can be taken into account only with kinetic models. The

damping increases with y and with the temperature (smaller

l). The damping rates start to increase (Im(x) becomes

more negative) for y values in the normal zone, becomes

larger in the anomalous zone and exists even after the cutoff

in wave number. That is, Alfv�en solutions remain after the

cutoff, but correspond to aperiodic modes, where Re(x)¼ 0,

(see Refs. 22 and 23). Notice that the cutoff points in Fig.

1(a) correspond to the points, where the curves in Fig. 1(b)

change curvature. Thus, in Fig. 1(b), such points of curva-

ture change in the growth rate separate the regimes of peri-

odic and aperiodic modes.

Regarding the ordinary mode, Fig. 1(a) shows that the

effective plasma frequency (lower cutoff for the electro-

magnetic branch) decreases as we increase the temperature.

Thus, as the temperature increases the plasma becomes

more transparent to the propagation of light waves. This

can be seen in Fig. 2(a), where we plot the normalized

effective plasma frequency xeff
pe ¼ xeff

pe =Xc vs. l, for: Solid

(black) line: x2
pe=X

2
c ¼ 1; dashed (blue) line: x2

pe=X
2
c ¼ 0:5;

dotted (red) line: x2
pe=X

2
c ¼ 2. Fig. 2(b) shows the normal-

ized Alfv�en velocity vA/c vs. l, for the same values of

x2
pe=X

2
c as in Fig. 2(a). The Alfv�en velocity is given by the

relation x� vAy/c, for x 	 1 and y 	 1. This velocity

decreases with the raise of the temperature. Also, both the

plasma frequency and the Alfv�en speed depend on m�1=2.

Thus, relativistic effects modify the role of the thermal fluc-

tuations through a change on the effective mass of the par-

ticles. As the temperature increases the effective mass

increases, and therefore, the effective Alfv�en speed and

plasma frequency decrease. Both results in Fig. 2 are quali-

tatively consistent with the previous models of Refs. 12

and 15. From Fig. 2, we can also observe the differences

between over and underdense plasmas, xpe/Xc> 1 or xpe/

Xc< 1, respectively. In Fig. 2(a), it is clear that as we

increase the value of xpe/Xc, the effective plasma frequency

is increased, for all temperatures. On the other hand,

Fig. 2(b) shows that the increase in xpe/Xc results in a

decrease of the Alfv�en velocity. This is an expected result,

if we consider the relation xpe/Xc¼ c/vA, in which we see

that vA is inversely proportional to xpe/Xc.

FIG. 2. (a) Normalized effective

plasma frequency xeff
pe ¼ xeff

pe =Xc vs. l.

(b) Normalized Alfv�en velocity vA/c
vs. l. Both graphs for: Solid (black)

line: x2
pe=X

2
c ¼ 1; dashed (blue) line:

x2
pe=X

2
c ¼ 0:5; dotted (red) line:

x2
pe=X

2
c ¼ 2.

FIG. 1. Dispersion relation (26) for

xpe/Xc¼ 1. (a) Normalized wave num-

ber y¼ ck/Xc vs. real part of normal-

ized frequency x¼x/Xc. (b)

Normalized wave number y¼ ck/Xc

vs. imaginary part of normalized fre-

quency x¼x/Xc. Solid (black) lines:

l¼ 100; dashed (blue) lines: l¼ 10;

dotted dashed (red) lines l¼ 5; dotted

(green) lines: l¼ 2.
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IV. PARTICLE IN CELL SIMULATIONS

To put in perspective our theoretical results we have

performed a fully relativistic one dimensional full particle-

in-cell (PIC) simulation, in which the momentum equation

of both electrons and positrons is solved in the self-

consistent electromagnetic field. In our 1.5-D (i.e., one spa-

tial and 3 velocity dimensions) simulations, the plasma is

presumed to be collisionless, homogeneous, and magne-

tized. The detailed description of the numerical scheme

can be found in Ref. 27. We start the simulation from a

quiet state, in which the particle velocities are only given

by their thermal motion. The relativistic effects are

included in the Lorentz equation of motion for the particles

and in their thermal motion, by considering a Maxwell-

J€uttner velocity distribution function for the initial condi-

tion with equal temperature and density for both electrons

and positrons, so no free energy is present and the plasma

is stable. The system size is L¼ 512 in units of the electron

inertial length and the number of grid points is N¼ 2048,

with 1000 particles per species initially in each cell. We

run the simulation until xpeT¼ 1310.72 with time steps of

xpeDt¼ 0.01.

As the system evolves the initial thermal noise pro-

duces electromagnetic fields, and the normal modes of the

system can be studied. We perform a two-dimensional

Fourier transform (in space and time) of the magnetic field,

obtaining the dispersion relation for the normal modes. In

Fig. 3, we show the power spectrum for the normalized

magnetic field in the case of xpe/Xc¼ 1, and l¼ 100 [Figs.

3(a) and 3(c)] and l¼ 10 [Figs. 3(b) and 3(d)], using xpe/

Xc¼ 1. In this figure, we can clearly identify the normal

modes described in Sec. III (Fig. 1), namely, the electro-

magnetic ordinary mode and the Alfv�en mode.

Furthermore, in the simulation results, we can see the spon-

taneous thermal fluctuations, which have been described in

previous works for unmagnetized relativistic plasmas22–24

and for magnetized nonrelativistic plasmas, in proton28 and

electron29 scales. In the nonrelativistic limit, it has been

shown that spontaneous fluctuations are enhanced and

shifted to smaller wave numbers for higher plasma beta val-

ues,28,29 which is consistent with our simulations. Because

the relationship between the plasma beta b ¼ 8pnkBT=B2
0

and l is given by l ¼ ð2=bÞðx2
pe=X

2
cÞ, and for xpe/Xc¼ 1,

we obtain l¼ 2/b, which means that our examples corre-

spond to b¼ 0.02 and 0.2, respectively. Thus, in the relativ-

istic regime, the fluctuations are also enhanced for higher

beta values. These spontaneous thermal fluctuations cannot

be described by our model, because linear theory does not

include fluctuations since they correspond to second order

perturbations. Furthermore, the velocity distribution in

Vlasov equation is an ensemble averaged quantity and does

not include microscopic information as the fine-grained

Klimontovich distribution.30 We plan to study the sponta-

neous fluctuations in a subsequent paper.

If we focus our attention on the Alfv�en branch of Fig. 3,

we see that for a certain value of the normalized wave num-

ber, this branch loses its identity, and the modes with higher

wave number merge with thermal fluctuations, which is con-

sistent with the appearance of damped modes as we can see

in Fig. 1(b). In the case of l¼ 100 (solid black line in

Fig. 1), the damped modes begin to grow for y� 1.5 [see

Fig. 1(b)], which is in agreement with Fig. 3(a), where the

Alfv�en branch becomes diffuse around y� 1.5. The same

comparison can be made for l¼ 10, Fig. 3(b), but in this

case, the wave number bandwidth for which the damped

mode appears is smaller.

In Figs. 3(c) and 3(d), we present the same cases as in

Figs. 3(a) and 3(b) (l¼ 100 and l¼ 10, respectively), but

this time we have superimposed the dispersion relation of

our kinetic model presented in Sec. III. We can see a very

good match between the two approaches for both kinds of

waves. For the ordinary electromagnetic mode, the agree-

ment is better for smaller temperatures, Fig. 3(c). For larger

temperatures, Fig. 3(d), the thermal fluctuations are higher

and, therefore, for larger wave numbers, it is more difficult

FIG. 3. Power spectrum for the nor-

malized magnetic field fluctuations

obtained from the PIC simulations.

Normalized frequency x¼x/Xc vs.

normalized wave number y¼ ck/Xc,

for xpe/Xc¼ 1. (a) l¼ 100. (b) l¼ 10.

(c) l¼ 100. (d) l¼ 10. Real part of

numerical dispersion relation, Eq. (26),

has been superimposed as a black line

in Figs. (c) and (d). Solid line: numeri-

cal solution with jImðxÞj < 10�3.

Dashed line: numerical solution with

jImðxÞj > 10�3.
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to observe the Alfv�en mode from the simulations due to

decreasing signal to noise ratio. However, for smaller wave

numbers (normal dispersion zone), both solutions overlap.

We have separated the numerical solution (black line) in

two zones. The continuous black line shows the zone in

which jImðxÞj < 10�3 and the dashed black line

jImðxÞj > 10�3, showing the damped modes for the Alfv�en

branch. For smaller l (higher b), the fluctuations tend to fill

the x-y space. Thus, even though the anomalous zone begins

at smaller wave number for higher temperatures, the con-

sistent increase of thermal fluctuations does not allow us to

observe a clear Alfv�en branch as in the numerical solution.

However, in the same wave number range, Alfv�en waves

become more and more damped [see Fig. 1(b)], with real

frequencies approaching zero and from the theory, we also

expect not to observe propagating waves at those wave

numbers.

In this Section, we have restricted the study to the case

xp/Xc¼ 1. For under and overdense plasmas, as shown in

Fig. 2(a), simulations are expected to show that the electro-

magnetic branch is lowered with respect to Fig. 3, because

the effective plasma frequency decreases. As to the Alfv�en

branch, simulations are expected to show that its slope at the

origin decreases as xp/Xc increases [see Fig. 2(b)]. Other

than this, no major differences are expected in Fig. 3 for dif-

ferent values of xp/Xc.

V. CONCLUSIONS

We used a full kinetic model to study the linear trans-

verse dispersion relation for a relativistic electron-positron

plasma. The correct analytical continuation for the whole

frequency plane was presented. The dispersion relation was

studied numerically for various plasma temperatures. We

found that the dispersion relation presents two branches:

the electromagnetic ordinary mode and the Alfv�en mode.

We have studied the main characteristics of these two

branches. In the low frequency regime, the Alfv�en branch

presents two zones: the normal zone (where frequency

increases with the wave number) and the anomalous zone

(where the frequency decreases with the wave number).

The existence of this anomalous zone was earlier reported

in Refs. 12 and 15, in the context of a relativistic fluid

theory and a one dimensional kinetic theory, respectively.

In contrast to these two models, here, we found that waves

in the anomalous zone of the Alfv�en branch are highly

damped, with the damping increasing with temperature. We

also have studied the variation of Alfv�en velocity and the

effective plasma frequency as a function of the temperature.

We obtained that relativistic effects introduce an effective

mass that increases with temperature. For higher thermal

motion, it is more difficult for the plasma to generate

Alfv�enic fluctuations (smaller effective Alfv�en speed) and

also the plasma becomes more transparent to the electro-

magnetic ordinary wave (smaller effective plasma

frequency).

Finally, we have performed a fully relativistic one

dimensional full particle-in-cell simulation, whose results we

have compared to the dispersion relation of the model

presented in this manuscript. Both results turn out to be con-

sistent with each other, and thus the main features of the

wave modes present in the simulations can be explained with

the kinetic model. However, thermal spontaneous electro-

magnetic fluctuations are not included in the kinetic linear

theory. We found that these fluctuations seem to coexist with

Alfv�en waves in the anomalous and aperiodic (x¼ 0)

regions, where it is not possible to identify the normal mode

clearly. This apparent absence of Alfv�en waves in the anom-

alous zone during the simulations leads to the question on

which effect (damping or thermal fluctuations) is more im-

portant. We plan to continue the study of this particular issue

and also to extend the model for anisotropic relativistic dis-

tribution functions with free energy available to excite wave

modes, which will lead us to investigate cyclotron and fire-

hose instabilities under plasma conditions in which relativis-

tic effects are relevant.
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APPENDIX A: DETAILED ANALYTICAL CONTINUATION

In this section, we follow a similar procedure used by

Felten et al.22 for the unmagnetized case, to calculate the

appropriate analytical continuation of integral Eq. (18),

whose solution has the form

JþL;j ¼ lnjXjj þ iU ; (A1)

where

Xj ¼
z� S2j cð Þ
zþ S1j cð Þ

; (A2)

and U¼ arg Xj is the argument of the complex function Xj,

which lies in the interval �p � arg Xj � p. S1j and S2j are

given by the definitions Eqs. (21) and (22). We also define

the complex number z¼Rþ iI, where R¼Re(z) is the real

part and I¼ Im(z) is the imaginary part. Then, Eq. (A1) can

be written as

JþL;j ¼
1

2
ln

R� S2jð Þ2 þ I2

Rþ S1jð Þ2 þ I2

" #

þ i arctan
S2j � R

I

� �
þ arctan

S1j þ R

I

� �
 �
: (A3)

This solution is valid for the whole complex Xj plane, except

for the points on the negative real axis, limI!06 ReðXjÞ < 0.

As the real part of Xj is given by

092107-7 L�opez et al. Phys. Plasmas 21, 092107 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.183.169.235 On: Mon, 24 Nov 2014 20:42:59



Re Xjð Þ ¼
R� S2jð Þ Rþ S1jð Þ þ I2

Rþ S1jð Þ2 þ I2
; (A4)

it follows that we have to evaluate the solution (A3) care-

fully when

lim
I!06

Re Xjð Þ ¼
R� S2j cð Þ
Rþ S1j cð Þ

� 0 : (A5)

There are two possible ways to satisfy the previous condi-

tion, R� S2j(c)< 0 and Rþ S1j(c)> 0, or R� S2j(c)> 0 and

Rþ S1j(c)< 0. For instance, considering the first condition,

the argument of Xj is

Uþ ¼ lim
I!0þ

UðR; IÞ ¼ p ;

U� ¼ lim
I!0�

UðR; IÞ ¼ �p ;

therefore, there is a discontinuity as we approach from

I! 0þ or I! 0�.

To solve this issue, we can impose the continuity condi-

tion for U

lim
I!0þ

UðR; IÞ ¼ lim
I!0�

UðR; IÞ : (A6)

Thus, we just set

Uþ ¼ arctan
S2j � R

I

� �
þ arctan

S1j þ R

I

� �
;

U� ¼ Uþ þ 2p :

For the second condition, we can carry out a similar pro-

cedure. Now, U will be continuous in the whole complex

plane, and therefore also Eq. (A3).

The two possible conditions given above to satisfy

Eq. (A5) are different depending on the charge of each parti-

cle (S1,j and S2,j functions), and thus it is necessary to con-

sider each species separately. We will examine in detail each

condition as a function of c, for both electrons and positrons.

1. Solution for electrons

Equation (A3) for electrons is

JþL;e ¼
1

2
ln

R� S2eð Þ2 þ I2

Rþ S1eð Þ2 þ I2

" #

þ i arctan
S2e � R

I

� �
þ arctan

S1e þ R

I

� �
 �
; (A7)

where

S1e cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�2

p
þ t

c
; (A8)

S2e cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�2

p
� t

c
: (A9)

We will study only the case t> 0, because due to the symme-

try, for t< 0 in the electron regime, the integral Eq. (18)

becomes the one for the positrons, which we will study later

(Sec. A 2). We note that S1e(c)> 0 for t> 0. We must focus

our attention in cases that satisfy the condition in Eq. (A5),

which for electrons are

R� S2eðcÞ < 0 and Rþ S1eðcÞ > 0 ; (A10)

or

R� S2eðcÞ > 0 and Rþ S1eðcÞ < 0 : (A11)

The second condition, Eq. (A11), implies thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�2

p
< �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�2

p
, which is not possible, so, we will

focus our attention in the first one, Eq. (A10). This condition

can be written as

�S1eðcÞ < R < S2eðcÞ ; (A12)

which means that R should be in the integration interval. In

Fig. 4, we plot the limits of the integration interval �S1e(c)

and S2e(c) as a function of c, for t> 1 [Fig. 4(a)] and

0< t< 1 [Fig. 4(b)], as in Ref. 19.

From Fig. 4, we note that we should seek the interval of

c, which satisfies the condition in Eq. (A12). For instance,

for �1 < R < 1 and t> 1 [Fig. 4(a)], the condition in

Eq. (A12) is fulfilled only for values of c� c1e, i.e., R is in

the integration interval [�S1e, S2e] when c� c1e, where c1e is

solution of R¼ S2e(c). However, when �t < R < �1, c will

be bounded by two values, the lower limit given by the solu-

tion R¼ S2e(c) and the upper limit from R¼�S1e(c). Finally,

for �
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p

< R < �t, the limits will be given by the two

solutions of R¼�S1e(c).

For t< 1, Fig. 4(b), we follow a similar procedure, ana-

lyzing the different cases shown in Fig. 4(a). So, identifying

all the possible cases in which limI!06 <Xj < 0, we can find

a general expression for the integral JL;e. The analytical con-

tinuation for the electrons is

FIG. 4. Limits of the integral interval

�S1e(c) and S2e(c), for: (a) t> 1; (b)

t< 1. Solid line (black): �S1e. Dashed

line (blue): S2e. Dotted dashed line

(red) is a particular value of R.
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JL;e c; z; tð Þ ¼
1

2
ln

R� S2eð Þ2þ I2

Rþ S1eð Þ2þ I2

" #

þ i arctan
S2e�R

I

� �
þ arctan

S1eþR

I

� �
þ he


 �
;

(A13)

with

he ¼

0; R � �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2
p

;

prHðc � c1eÞHðc2e � cÞ; �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2
p

< R < �1 ;

prHðc � c1eÞ; �1 < R < 1 ;

0; R � 1 ;

8>>>><
>>>>:

where H is the Heaviside step function,

c1e ¼
Rtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1� R2
p

1� R2
;

c2e ¼
Rt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1� R2
p

1� R2
;

and

r ¼
2; I < 0 ;

1; I ¼ 0 ;

0; I > 0 :

8><
>:

This function is continuous and analytical in the whole com-

plex plane, so we have omitted the upper index þ in JL;e.

2. Solution for positrons

Equation (A3) for positrons is

JþL;p ¼
1

2
ln

R� S2pð Þ2 þ I2

Rþ S1pð Þ2 þ I2

" #

þ i arctan
S2p � R

I

� �
þ arctan

S1p þ R

I

� �
 �
; (A14)

where

S1p cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�2

p
� t

c
; (A15)

S2p cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�2

p
þ t

c
: (A16)

As in the previous case, we will consider only t> 0. The con-

dition (A5) gives us the cases

R� S2pðcÞ < 0 y Rþ S1pðcÞ > 0 ; (A17)

or

R� S2pðcÞ > 0 y Rþ S1pðcÞ < 0 : (A18)

As in Sec. A 1, the second condition, Eq. (A18), is not ful-

filled for any values of c and t. The first one can be written as

�S1pðcÞ < R < S2pðcÞ: (A19)

In Fig. 5, we can see the behavior of the functions �S1p

and S2p as a function of c, for t> 1 [Fig. 5(a)] and t< 1

[Fig. 5(b)].

As in the electron case, we will study all the cases

shown in Fig. 5, obtaining the solution

JL;p c;z; tð Þ¼
1

2
ln

R�S2pð Þ2þ I2

RþS1pð Þ2þ I2

" #

þ i arctan
S2p�R

I

� �
þ arctan

S1pþR

I

� �
þhp


 �
;

(A20)

with

hp ¼

0; R � �1 ;

prHðc� c1pÞ; �1 < R � 1 ;

prHðc� c1pÞHðc2p � cÞ; �1 < R <
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p

;

0; R �
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p

;

8>>>><
>>>>:

where H is the Heaviside step function,

c1p ¼
�Rtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1� R2
p

1� R2
;

c2p ¼
�Rt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1� R2
p

1� R2
;

and

r ¼

2; I < 0 ;

1; I ¼ 0 ;

0; I > 0 :

8>>><
>>>:

FIG. 5. Limits of the integral interval

�S1p(c) and S2p(c), for: (a) t> 1; (b)

t< 1. Solid line (black): �S1p. Dashed

line (blue): S2p. Dotted dashed line

(red) is a particular value of R.
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This function is continuous and analytical in the whole

complex plane.
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